• <center id="ckp5g"></center>
    <thead id="ckp5g"><video id="ckp5g"></video></thead>

      <bdo id="ckp5g"></bdo>
      1. <button id="ckp5g"><video id="ckp5g"><small id="ckp5g"></small></video></button>
        中文字幕av日韩精品一区二区,少妇厨房愉情理伦片bd在线观看 ,久久久久人妻精品一区三寸蜜桃 ,91久久精品亚洲中文字幕无码,三级国产三级在线,A亚洲VA欧美VA国产综合,无码人妻AV一区二区三区蜜臀,日韩精品久久久久久免费

        收藏壹芯微 | 在線留言| 網站地圖

        您好!歡迎光臨壹芯微科技品牌官網

        壹芯微

        深圳市壹芯微科技有限公司二極管·三極管·MOS管·橋堆

        全國服務熱線:13534146615

        壹芯微二極管
        首頁 » 壹芯微資訊中心 » 常見問題解答 » 功率MOSFET并聯時產生寄生振蕩的原因與解決方案

        功率MOSFET并聯時產生寄生振蕩的原因與解決方案

        返回列表來源:壹芯微 發布日期 2019-11-23 瀏覽:-

        功率MOSFET并聯時產生寄生振蕩的原因與解決方案

        功率MOS管即功率MOSFET,具有熱漂移小,驅動電路簡單,驅動功率小,開關速度快,工作頻率高等優點。憑借出色的熱穩定性,將多個功率MOSFET并聯的方法可行而簡單,這對提高輸出電流非常有意義。

        事實上,MOSFET工作于高頻率開關狀態,任何電氣特性差異和電路雜散電感均可導致瞬時電壓峰值,以及并聯MOSFET之間的電流分配不平衡。這是非常有害的,因為電流不平衡可能導致功率損耗過大并損壞器件。

        功率MOSFET

        并聯MOSFET(左)及寄生振蕩狀態的等效電路(右)

        并聯連接時,最重要的是避免電流集中(包括在開關轉換期間),并確保在所有可能的負載條件下,流向所有MOSFET的電流保持平衡且均勻。應特別注意以下方面:

        (1) 因器件特性不匹配(并聯運行)導致的電流不平衡。

        (2) 寄生振蕩(并聯運行)。

        1. 器件不匹配導致的電流不平衡

        (1) 穩態運行中的電流不平衡

        在非開關期間,按照與并聯MOSFET的導通電阻成反比的方式為其分配電流。導通電阻最低的MOSFET將承載最高的電流。導通電阻的正溫度系數通常會為電流不平衡提供補償,使通過各個 MOSFET的電流相等。

        因此,認為并聯MOSFET在穩態情況下很少出現熱擊穿。MOSFET體二極管中壓降的溫度系數非正值。因此,并聯MOSFET在其體二極管處于導通時,可能使穩態電流的分配出現大幅不平衡現象。但事實上,MOSFET的體二極管在通過電流時,MOSFET的溫度升高。所以,當其導通電阻增大時,其流過的電流就會減小。因此,穩態電流中的不平衡很少會造成問題。

        (2)開關轉換期間的電流不平衡

        一般來說,開通和關斷開關轉換期間會出現電流不平衡現象。這是由于并聯功率MOSFET之間的開關時間差異所致。開關時間的差異很大程度上取決于柵源閾值電壓Vth的值。即Vth值越小,開通時間越快;Vth值越大,關斷時間越快。因此,當電流集中在Vth較小的MOSFET中時,開通和關斷期間都會發生電流不平衡現象。這種電流不平衡會對器件施加過高的負載,并引發故障。并聯連接時,為了減少瞬態開關期間的開關時間差異,最好使用Vth接近的功率MOSFET。對于跨導gm較高的MOSFET,開關時間也會更快。

        此外,如果并聯MOSFET在其互連線路中的雜散電感不同,電路接線布局也是開關轉換期間引發電流不平衡的一個原因。尤其是源極電感會影響柵極驅動電壓。最好使并聯MOSFET之間的互連線路長度相等。

        2. 并聯運行的寄生振蕩

        (1)因漏源電壓振蕩導致的柵極電壓振蕩

        開關期間MOSFET的漏極端子和源極端子中會發生浪涌電壓VSurge,主要是因為關斷期間的di/dt和漏極端子及引線中的雜散電感(Ld)。如果VSurge導致的振蕩電壓通過MOSFET漏柵電容Cgd傳輸到柵極,就會與柵極線路的雜散電感L形成諧振電路。

        高電流、高速MOSFET的內部柵極電阻極小。在無外部柵極電阻器的情況下,該諧振電路的品質因數會很大。如果發生諧振,諧振電路會在MOSFET的柵極端子和源極端子中產生很大的振蕩電壓,導致發生寄生振蕩。

        除非并聯MOSFET的瞬態開關電流在關斷期間平衡良好,否則電流會不均勻地分配到之后關斷的MOSFET。該電流在漏極端子和源極端子中產生很大的電壓浪涌(振蕩),而電壓浪涌又傳遞到柵極,導致柵極端子和源極端子中產生振蕩電壓。如振蕩電壓過大,會導致發生柵源過電壓故障、開通故障或振蕩故障。

        當最快的MOSFET關斷時,其漏極電壓上升。漏極電壓的上升通過柵漏電容Cgd傳遞到另一個MOSFET的柵極端子,導致MOSFET發生意外運轉,造成寄生振蕩。

        此外,并聯MOSFET共用一個低阻抗路徑,因此也很容易發生寄生振蕩。

        (2)并聯MOSFET的寄生振蕩

        一般來說,并聯MOSFET比單個MOSFET更易發生寄生振蕩。這是由于漏極線路、源極線路、柵極線路、接合線和其它線路中的雜散電感,以及MOSFET的結電容導致的。

        不過,寄生振蕩的發生與漏源負載、續流二極管、電源、共用柵極電阻器和柵極驅動電路無關。換句話說,可忽略續流二極管和串聯電阻器(如電容器的等效串聯電阻器)的導通電阻。因此,并聯MOSFET形成了具有高品質因數的諧振電路,由于具有高增益的反饋環路,該諧振電路極易發生振蕩。

        3. MOSFET寄生振蕩的預防

        并聯MOSFET的諧振電路由寄生電感和寄生電容組成(取決于其頻率)。

        要避免發生寄生振蕩,首先選擇MOSFET時要求Cds/Cgs比值較低,gm值較小,這樣就不容易發生振蕩。

        功率MOSFET

        為每個MOSFET插入一個柵極電阻器可減小諧振

        除了器件本身屬性,也可以使用外部電路來防止發生寄生振蕩,這里有兩種方法:

        (1)為每個MOSFET的柵極插入一個柵極電阻器R1或一個鐵氧體磁珠,這樣可減小諧振電路的品質因數,從而減小正反饋環路的增益。實驗證實,為并聯的每個MOSFET插入串聯柵極電阻器可以有效防止發生寄生振蕩。

        (2)在MOSFET的柵極和源極之間添加一個陶瓷電容器。

        功率MOSFET

        在MOSFET柵極和源極之間添加陶瓷電容器能預防寄生振蕩

        上述方法中,gm值較小的MOSFET價格會稍高,其他兩種方法可由用戶自行優化。不過,柵極電阻器會影響MOSFET的開關速度,電阻值會導致開關損耗增大;在柵極和源極之間添加電容器時應小心,電容器種類和容值選擇不當會產生反作用。

        壹芯微科技針對二三極管,MOS管作出了良好的性能測試,應用各大領域,如果您有遇到什么需要幫助解決的,可以點擊右邊的工程師,或者點擊銷售經理給您精準的報價以及產品介紹

        推薦閱讀

        【本文標簽】:

        【責任編輯】:壹芯微 版權所有:http://www.kannic.com/轉載請注明出處

        最新資訊

        1TVS選型別踩坑!這3個常見誤區讓防護形同虛設

        2提升開關電源電磁兼容性的關鍵策略解析

        3從布局到選材:提升MOS管散熱效率的五大關鍵策略

        41500W電源設計該選雙管正激還是半橋拓撲?深度對比分析

        5揭示雙管正激效率瓶頸:設計與損耗的平衡難題

        6雙橋正激拓撲全解析:運行機制、性能特點與實際應用

        7三類常見保護二極管全解析:穩壓管、TVS管與快恢復管的作用與區別

        8為何N溝道MOSFET在功率開關與信號調理中更具優勢?

        9掌握ESD二極管核心參數,提升電路抗靜電能力

        10二極管在LED照明電路中的高效應用策略:提升能效,降低功耗的關鍵路徑

        全國服務熱線13534146615

        地 址/Address

        工廠地址:安徽省六安市金寨產業園區
        深圳辦事處地址:深圳市福田區寶華大廈A1428
        中山辦事處地址:中山市古鎮長安燈飾配件城C棟11卡
        杭州辦事處:杭州市西湖區文三西路118號杭州電子商務大廈6層B座
        電話:13534146615 企業QQ:2881579535

        掃一掃!

        深圳市壹芯微科技有限公司 版權所有 | 備案號:粵ICP備2020121154號

        主站蜘蛛池模板: 国产精品久久久毛片AV| 亚洲午夜无码极品久久| 在线观看精品视频网站| 综合自拍亚洲综合图区www| 巨茎爆乳无码性色福利| 又色又污又爽又黄的网站| 娇妻丁字裤公交车被在线观看| 久久中夂字幕人妻熟av女| 国产精品久久xx| 国内精品自在自线视频| 国产乱来乱子视频| 亚洲高清av一区二区| 国产欧美日韩纵合在线| 精品人妻一区二区三区| 免费看片AV免费大片| 产精品一区在线观看你懂的| 蜜臀久久精品亚洲一区| 日本va中文字幕亚洲久| 久久久久久久久波多野高潮| 亚洲欧美日产综合在线网性色 | 亚洲欧美日韩看国产| 99久久亚洲精品无码毛片| 一区二区三区在线免费| 国产人妻xxxx精品hd| 中文在线а√天堂| 成年片色大黄全免费网站观看| 国产毛片一区二区三区精品| 国产成人精品自产拍在线观看| 欧美日韩一区| 高清国产精品久久| 国产精品福利午夜h视频| 九九热在线视频| 在线a级毛片无码免费真人| 务川| 无码国产色欲XXXXX视频| 精品无码av一区二区三区| av在线播放日韩亚洲欧| 日本亚洲色大成网站www久久| 超清人妻系列无码专区| 久久精品青青草原伊人| 亚洲天堂一区二区成人在线|