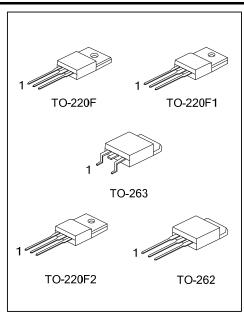


SHENZHEN YIXINWEI TECHNOLOGY CO.,LTD

6N70 Power MOSFET

6.0A, 700V N-CHANNEL POWER MOSFET

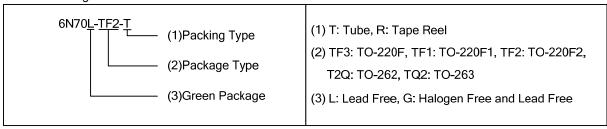
■ DESCRIPTION

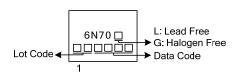

The Yixin **6N70** is an N-channel mode power MOSFET using's advanced technology to provide customers with a minimum on-state resistance, high switching speed, low gate charge and low input capacitance.

The Yixin **6N70** is universally applied in high efficiency switch mode power supply.

■ FEATURES

- * $R_{DS(ON)}$ <1.8 Ω @ V_{GS} =10V, I_{D} =3A
- * High switching speed
- SYMBOL




ORDERING INFORMATION

Ordering Number		Daalaaaa	Pin Assignment			De alsia a	
Lead Free	Halogen Free	Package	1	2	3	Packing	
6N70L-TF1-T	6N70G-TF1-T	TO-220F1	G	D	S	Tube	
6N70L-TF2-T	6N70G-TF2-T	TO-220F2	G	D	S	Tube	
6N70L-TF3-T	6N70G-TF3-T	TO-220F	G	D	S	Tube	
6N70L-T2Q-T	6N70G-T2Q-T	TO-262	G	D	S	Tube	
6N70L-TQ2-T	6N70G-TQ2-T	TO-263	G	D	S	Tube	
6N70L-TQ2-R	6N70G-TQ2-R	TO-263	G	D	S	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

MARKING

www.szyxwkj.com 1 of 6

■ ABSOLUTE MAXIMUM RATINGS (unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT		
Drain-Source Voltage		V_{DSS}	700	V		
Gate-Source Voltage (Note 2)		V_{GSS}	±30	V		
	Continuous	T _C =25°C	I _D	6	Α	
Drain Current		T _C =100°C		3.8	Α	
	Pulsed		I _{DM}	24	Α	
Avalanche Current (N	lote 2)		I _{AR}	6	Α	
Ala	Single Pulsed (Note 3)		E _{AS}	582	mJ	
Avalanche Energy	Repetitive (Note 2)		E _{AR}	13	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.5	V/ns		
		TO-220F1		40		
Power Dissipation		TO-220F2	-	42	14/	
		TO-220F		40	W	
		TO-262/ TO-263	Б	125		
TO-220F1 TO-220F2 TO-220F TO-262/TO-26		TO-220F1	P_D	0.22		
		TO-220F2		0.33	W/°C	
		TO-220F		0.32		
		TO-262/TO-263		1		
Junction Temperature		TJ	+150	°C		
Storage Temperature		T _{STG}	-55~+150	°C		

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

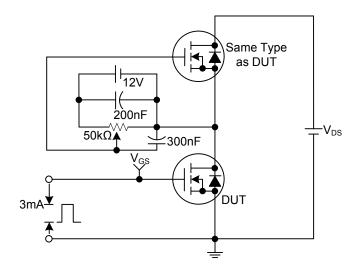
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature
- 3. L = 30mH, I_{AS} = 6A, V_{DD} = 50V, R_G = 27 Ω , Starting T_J = 25°C
- 4. $I_{SD} \le 6A$, di/dt $\le 140A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

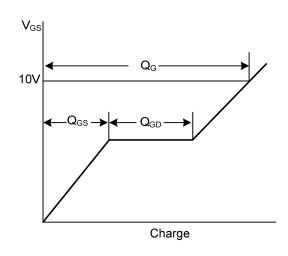
■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient		θ_{JA}	62.5	°C/W
	TO-220F1 TO-220F2		2.9	°C/W
Junction to Case	TO-220F	$\theta_{ extsf{JC}}$	3.1	°C/W
	TO-262/TO-263		1.0	°C/W
	TO-263		1.0	°C/W

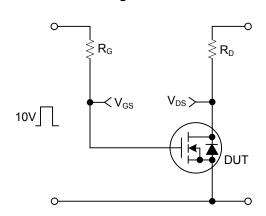
6N70 Power MOSFET

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

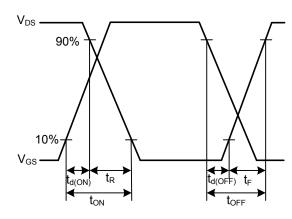

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =250μA, V _{GS} =0V	700			V
Breakdown Voltage Temperature Coefficient		$\Delta BV_{DSS}/\Delta T_{J}$	I _D =250μA		0.79		V/°C
Paris Construction Const			V _{DS} =700V			25	μΑ
Drain-Source Leakage Current		I _{DSS}	V _{DS} =560V, T _C =125°C			250	μΑ
Gate-Source Leakage Current	Forward		V _{GS} =+30V, V _{DS} =0V			+100	nA
	Reverse	I_{GSS}	V_{GS} =-30V, V_{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$, $V_{DS}=5V$	2.0		4.0	V
Static Drain-Source On-State Re	esistance	R _{DS(ON)}	V _{GS} =10V, I _D =3A (Note 1)		1.5	1.8	Ω
DYNAMIC PARAMETERS							
Input Capacitance	Input Capacitance		-\/ -0\/ \/ -25\/		900	1200	pF
Output Capacitance		C _{ISS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz (Note 1, 2)		90	115	pF
Reverse Transfer Capacitance		C_{RSS}	1-1.0101112 (NOTE 1, 2)		18	55	pF
SWITCHING PARAMETERS							
Turn-ON Delay Time		$t_{D(ON)}$			40	70	ns
Rise Time		t_{R}	V_{DD} =350V, I_{D} =6A, R_{G} =11.5 Ω		65	90	ns
Turn-OFF Delay Time		$t_{D(OFF)}$	VDD-350V, ID-0A, NG-11:522		190	230	ns
Fall-Time		t_{F}			88	116	ns
Total Gate Charge		Q_G	V _{GS} =10V, V _{DS} =560V,		110	140	nC
Gate to Source Charge		Q_GS	I _D =6A (Note 1, 2)		9		nC
Gate to Drain Charge		Q_GD	ID-OA (Note 1, 2)		23.1		nC
SOURCE- DRAIN DIODE RATII	NGS AND CI	HARACTERIS'	TICS				
Maximum Body-Diode Continuous Current		Is	Integral reverse pn-diode in			6	Α
Maximum Body-Diode Pulsed Current		I _{SM}	the MOSFET			24	Α
(Note 3)			THE WIGOI ET			4	^
Drain-Source Diode Forward Voltage		V _{SD}	I _S =6A, V _{GS} =0V, T _J = 25°C			1.4	V
(Note 2)			15 071, VGS-0V, IJ - 20 0			1.7	'
Body Diode Reverse Recovery Time		t _{rr}	I _F =6A, dI _F /dt=100A/μs,		440		ns
Body Diode Reverse Recovery Charge		Q_{RR}	T _J = 25°C		4.05		μC

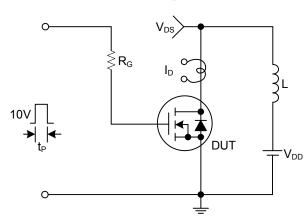

Notes: 1. Pulse Test: Pulse width ≤ 250µs, Duty cycle ≤ 2%

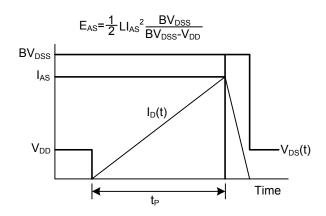
^{2.} Essentially independent of operating temperature


^{3.} Repetitive Rating: Pulse width limited by maximum junction temperature

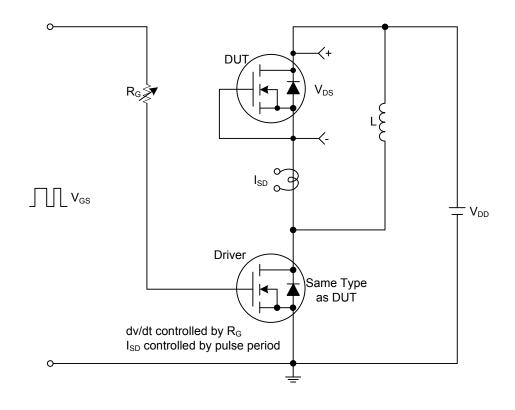
■ TEST CIRCUITS AND WAVEFORMS

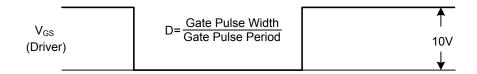


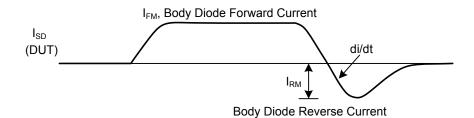

Gate Charge Test Circuit

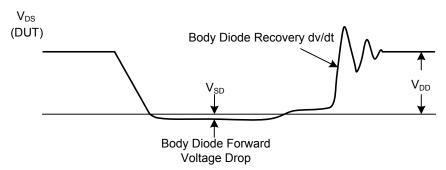

Gate Charge Waveforms

Resistive Switching Test Circuit

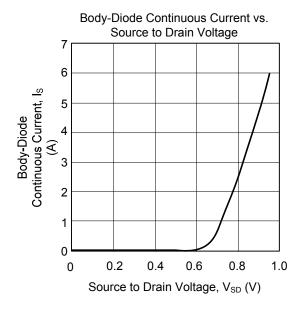

Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms

■ TEST CIRCUITS AND WAVEFORMS(Cont.)



Peak Diode Recovery dv/dt Test Circuit and Waveforms

■ TYPICAL CHARACTERISTICS

Yixin assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Yixin products described or contained herein. Yixin products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.