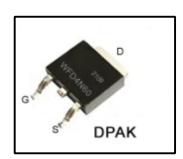

SHENZHEN YIXINWEI TECHNOLOGY CO.,LTD

Silicon N-Channel MOSFET


Features

- 4A,600V. $R_{DS(on)}(Max\ 2.5\Omega)@V_{GS}=10V$
- Ultra-low Gate Charge(Typical 16nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Isolation Voltage (VISO = 4000V AC)
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using 's advanced Planar stripe, DMOS technology. This latest technology has Been Especially designed to minimize on-state resistance, have a high Rugged avalanche characteristics. This devices is specially well Suited for half bridge and full bridge resonant topology line a Electronic lamp ballast.

Absolute Maximum Ratings

Symbol	Parameter	Value	Units	
VDSS	Drain Source Voltage	600	V	
1-	Continuous Drain Current(@Tc=25℃)	4	А	
l _D	Continuous Drain Current(@Tc=100℃)	2.5	А	
Ідм	Drain Current Pulsed (Note1	16	А	
Vgs	Gate to Source Voltage	±30	V	
Eas	Single Pulsed Avalanche Energy (Note 2)	240	mJ	
Ear	Repetitive Avalanche Energy (Note 1) 10	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3	4.5	V/ns	
Pp	Total Power Dissipation(@Tc=25℃)	80	W	
PD	Derating Factor above 25 ℃	0.78	W/°C	
TJ, Tstg	Junction and Storage Temperature	-55~150	$^{\circ}$	
TL	Channel Temperature	300	C	

Thermal Characteristics

Cumbal	Dorameter	Value			Linita	
Symbol	Parameter	Min	Тур	Max	Units	
Rajc	Thermal Resistance, Junction-to-Case	-	-	1.56	°C/W	
RQJA	Thermal Resistance, Junction-to-Ambient*			50		
R _{QJA}	Thermal Resistance, Junction-to-Ambient	-	-	110	°C/W	

^{*}When mounted on the minimum pad size recommended(PCB Mount)

Electrical Characteristics (Tc = 25° C)

Charac	teristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage cu	Gate leakage current		V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA
Gate-source bre	akdown voltage	V _{(BR)GSS}	I _G = ±10 μA, V _{DS} = 0 V	±30			V
Drain cut-off current		V _{DS} = 600 V, V _{GS} = 0 V		-	-	10	μA
		IDSS	V _{DS} = 480 V, T _c = 125°C	-	-	100	μA
Drain-source breakdown voltage		V(BR)DSS	I _D = 250 μA, V _{GS} = 0 V	600	-	-	V
Gate threshold voltage		V _{GS(th)}	V _{DS} = 10 V, I _D =250 μA	2	-	4	V
Drain-source Of	N resistance	RDS(ON)	Vgs = 10 V, ID =3.25A	-	1.8	2.5	Ω
Input capacitance		Ciss	V _{DS} = 25 V,	-	545	670	
Reverse transfer capacitance		Crss	Vgs = 0 V,	-	7	10	pF
Output capacitance		Coss	f = 1 MHz	-	70	90	
	Rise time	tr	V _{DD} =300 V,	-	10	30	
Occidentalism of the c	Turn-on time	ton	I _D = 4.4 A	-	35	80	
Switching time	Fall time	tf	R _G =25 Ω	-	45	100	ns
	Turn-off time	toff	(Note4,5)	-	20	50	
Total gate charge (gate-source			V _{DD} = 480 V,		40	00	
plus gate-drain)		Qg	Vgs = 10 V,	-	16	20	
Gate-source charge		Qgs	I _D =4.4A	-	3.4	-	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	7	-	

Source-Drain Ratings and Characteristics (Ta = 25° C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	IDR	-	-	-	4	Α
Pulse drain reverse current	IDRP	-	-	-	17.6	Α
Forward voltage (diode)	VDSF	IDR =4.4 A, VGS = 0 V	-	-	1.4	V
Reverse recovery time	trr	IDR = 4.4 A, VGS = 0 V,	-	390	-	ns
Reverse recovery charge	Qrr	dlor / dt = 100 A / μs	-	2.2	-	μC

Note 1.Repeativity rating :pulse width limited by junction temperature

2.L=18.5mH,I_AS=4.4A,V_DD=50V,R_G=0\Omega,Starting T_J=25 $^{\circ}\mathrm{C}$

3.I $_{SD}$ ≤4A,di/dt≤200A/us, V $_{DD}$ <BV $_{DSS}$,STARTING T $_{J}$ =25 $^{\circ}$ C

4.Pulse Test: Pulse Width≤300us,Duty Cycle≤2%

 $5. Essentially independent of operating \ temperature.\\$

This transistor is an electrostatic sensitive device

Please handle with caution

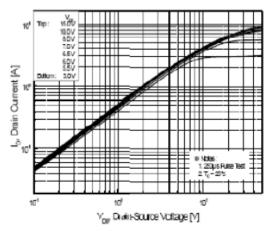


Fig.1 On-State Characteristics

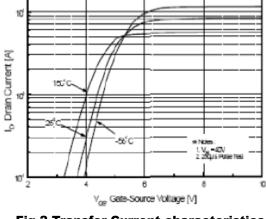


Fig.2 Transfer Current characteristics

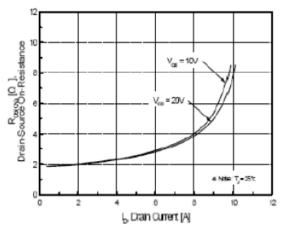


Fig3. On Resistance Variation vs
Drain current

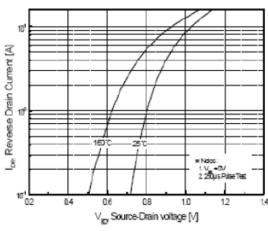


Fig.4 Body Diode Forward Voltage Variation vs Source Current and Temperature

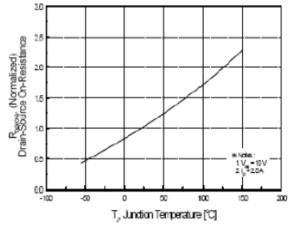


Fig.5 On-Resistance Variation vs

Junction Temperature

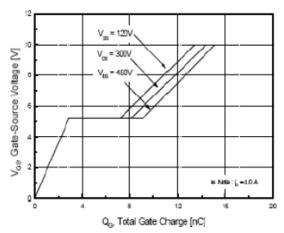


Fig.6 Gate Charge Characteristics

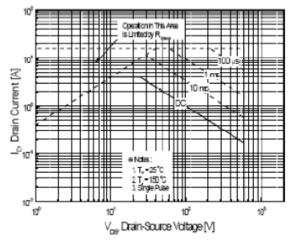


Fig.7 Maximum Safe Operation Area

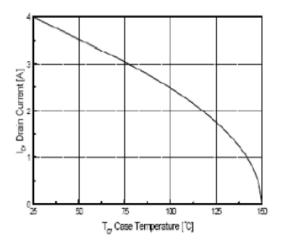


Fig.8 Maximum Drain Current vs Case Temperature

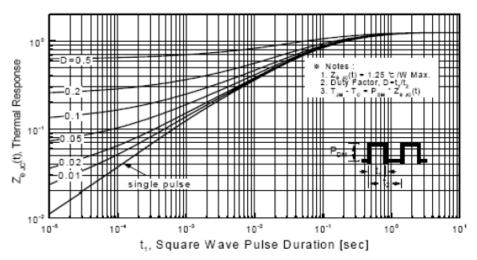


Fig.9 Transient Thermal Response curve

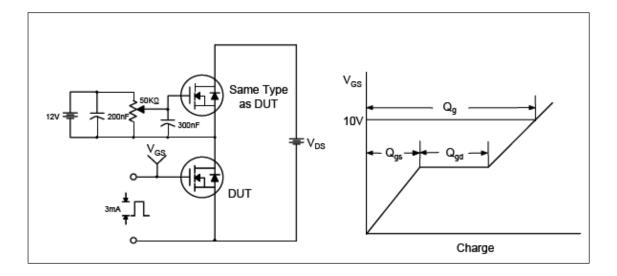


Fig.10 Gate Test Circuit & Waveform

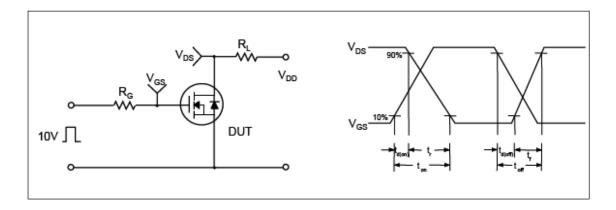


Fig.11 Resistive Switching Test Circuit & Waveform

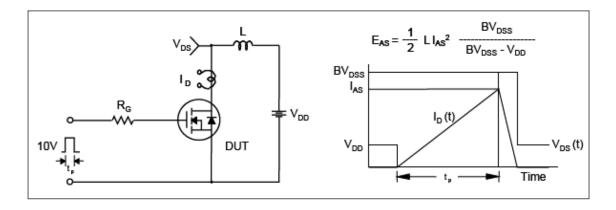


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform

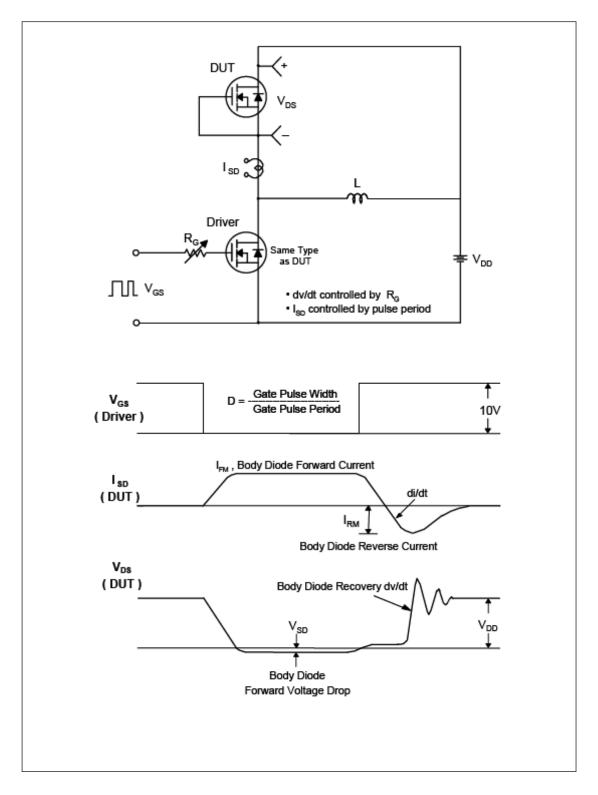
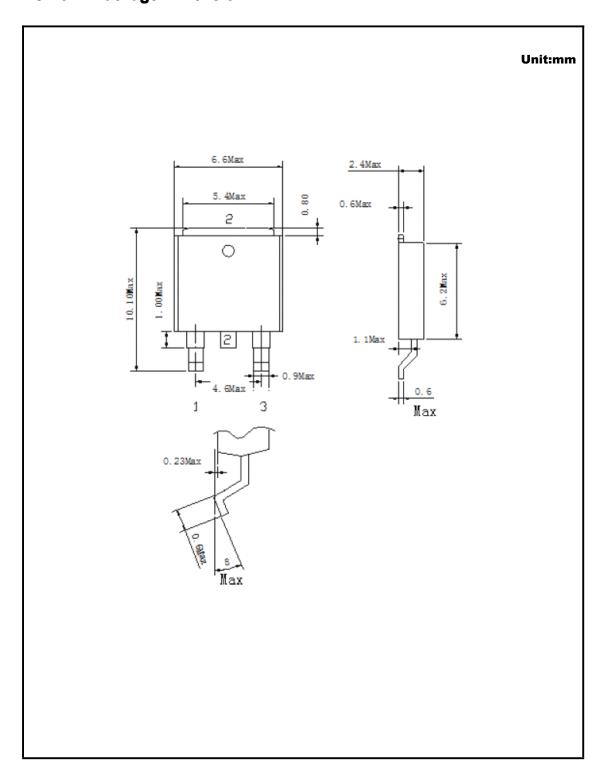



Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

TO-252 Package Dimension

