FDD8444-F085

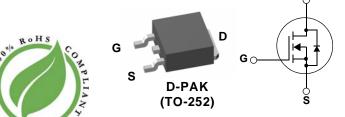
N-Channel Power MOSFET 40V, 50A, $5.2m\Omega$

Features

- Typ $R_{DS(on)} = 4m\Omega$ at $V_{GS} = 10V$, $I_D = 50A$
- Typ $Q_{q(10)} = 89nC$ at $V_{GS} = 10V$, $I_D = 50A$
- Low Miller Charge
- Low Qrr Body Diode
- UIS Capability (Single Pulse/ Repetitive
- RoHS Compliant
- Qualified to AEC Q101

Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Transmission
- Distributed Power Architecture and VRMs
- Primary Switch for 12V Systems


Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		40	V
V_{GS}	Gate to Source Voltage		±20	V
	Drain Current Continuous (V _{GS} = 10V)		50	^
I _D	Pulsed		Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Not	te 1)	535	mJ
D	Power Dissipation		153	W
P_D	Derate above 25°C		1.02	W/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to +175	°C
$R_{\theta JC}$	Thermal Resistance Junction to Case		0.98	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient, 1in ² copper pad area		52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8444	FDD8444-F085	TO-252AA	13"	12mm	2500 units

Notes:

- 1: Starting $T_J = 25$ °C, L = 0.67mH, $I_{AS} = 40$ A
- 2: A suffix as "...F085P" has been temporarily introduced in order to manage a double source strategy as ON Semiconductor has officially announced
- in Aug 2014.

Units

Max

Electrical Characteristics	= 25°C unless otherwise noted
----------------------------	-------------------------------

Parameter

Off Characteristics								
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} =$	= 0V	40	-	-	V	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32V$,		-	-	1		
		$V_{GS} = 0V$	$T_A = 150^{\circ}C$	-	-	250	μА	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA	

Test Conditions

Min

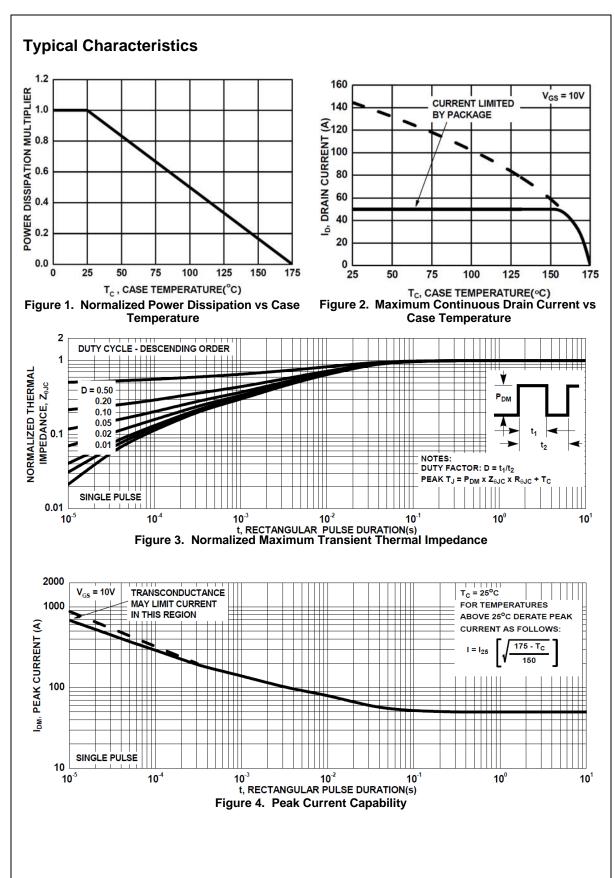
Тур

On Characteristics

Symbol

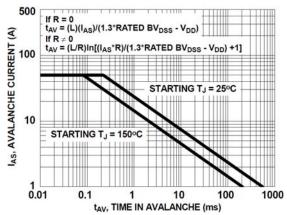
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	2.5	4	٧
		$I_D = 50A, V_{GS} = 10V$	-	4	5.2	
r _{DS(on)}	r _{DS(on)} Drain to Source On Resistance	$I_D = 50A, V_{GS} = 10V$ $T_J = 175$ °C	-	7.2	9.4	mΩ

Dynamic Characteristics


C _{iss}	Input Capacitance	V 05V V	0)/	-	6195	-	pF
C _{oss}	Output Capacitance		$V_{DS} = 25V, V_{GS} = 0V,$ f = 1MHz		585	-	pF
C _{rss}	Reverse Transfer Capacitance	1 = 1101112			332	-	pF
R_G	Gate Resistance	f = 1MHz	f = 1MHz		1.9	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0 to 10V		-	89	116	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0$ to $2V$	V _{DD} = 20V		11	-	nC
Q_{gs}	Gate to Source Gate Charge		I _D = 50A	-	23	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	20	-	nC

Switching Characteristics

t _{on}	Turn-On Time	$V_{DD} = 20V, I_D = 50A$ $V_{GS} = 10V, R_{GS} = 2\Omega$	-	-	135	ns
t _{d(on)}	Turn-On Delay Time		-	12	-	ns
t _r	Rise Time		-	78	-	ns
t _{d(off)}	Turn-Off Delay Time		-	48	-	ns
t _f	Fall Time		-	15	-	ns
t _{off}	Turn-Off Time		-	-	95	ns


Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 50A	-	-	1.25	\/	
		I _{SD} = 25A	-	-	1.0	v	
t _{rr}	Reverse Recovery Time	$I_{SD} = 50A$, $dI_{SD}/dt = 100A/\mu s$	-	39	51	ns	
Q _{rr}	Reverse Recovery Charge		-	45	59	nC	

Typical Characteristics 1000 10us 100 DRAIN CURRENT 100us 10 **CURRENT LIMITED** 1 ò **OPERATION IN THIS** 10_{ms} AREA MAY BE LIMITED BY rDS(on) TJ = MAX RATED Tc = 25°C DC 0.1 100 VDS, DRAIN TO SOURCE VOLTAGE (V)

Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching Capability

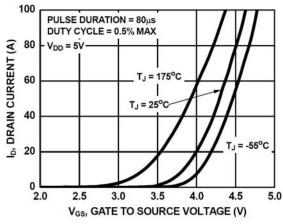


Figure 7. Transfer Characteristics

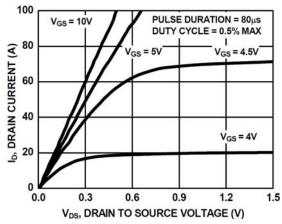


Figure 8. Saturation Characteristics

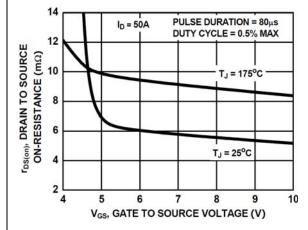


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

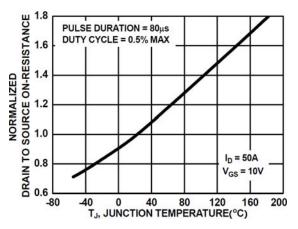


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics

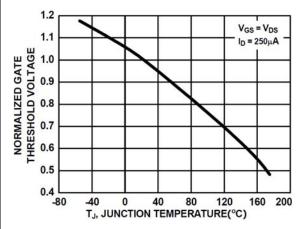


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

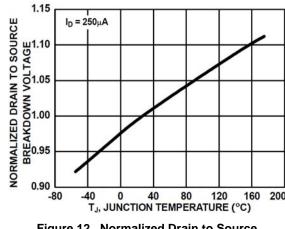


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

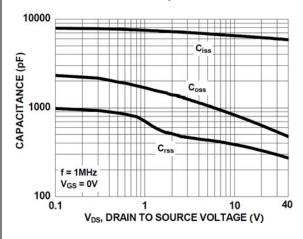


Figure 13. Capacitance vs Drain to Source Voltage

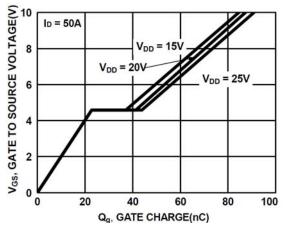


Figure 14. Gate Charge vs Gate to Source Voltage