

High Voltage Power Transistors DPAK For Surface Mount Applications

Designed for line operated audio output amplifier, switchmode power supply drivers and other switching applications.

- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Straight Lead Version in Plastic Sleeves ("-1" Suffix)
- Lead Formed Version in 16 mm Tape and Reel ("T4" Suffix)
- Electrically Similar to Popular TIP47, and TIP50
- 250 and 400 V (Min) VCEO(sus)
- 1 A Rated Collector Current

MAXIMUM RATINGS

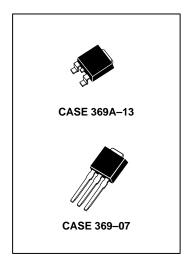
Rating	Symbol	MJD47	MJD50	Unit
Collector–Emitter Voltage	VCEO	250	400	Vdc
Collector-Base Voltage	V _{CB}	350	500	Vdc
Emitter–Base Voltage	V _{EB}	5		Vdc
Collector Current — Continuous Peak	IC	1 2		Adc
Base Current	ΙΒ	0.6		Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	15 0.12		Watts W/°C
Total Power Dissipation* @ T _A = 25°C Derate above 25°C	PD	1.56 0.0125		Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150		°C

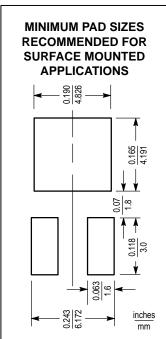
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	8.33	°C/W
Thermal Resistance, Junction to Ambient*	$R_{\theta JA}$	80	°C/W
Lead Temperature for Soldering Purpose	TL	260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage (1) MJD47 (I _C = 30 mAdc, I _B = 0) MJD50	VCEO(sus)	250 400		Vdc
Collector Cutoff Current (VCE = 150 Vdc, IB = 0) MJD47 (VCE = 300 Vdc, IB = 0) MJD50	ICEO	_ _	0.2 0.2	mAdc


^{*} When surface mounted on minimum pad sizes recommended.


(1) Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2\%$.

MJD47* MJD50*

*Motorola Preferred Device

NPN SILICON
POWER TRANSISTORS
1 AMPERE
250, 400 VOLTS
15 WATTS

(continued)

MJD47 MJD50

ELECTRICAL CHARACTERISTICS – continued ($T_C = 25$ °C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS — continued					
Collector Cutoff Current (VCE = 350 Vdc, VBE = 0) (VCE = 500 Vdc, VBE = 0)	MJD47 MJD50	ICES		0.1 0.1	mAdc
Emitter Cutoff Current (VBE = 5 Vdc, IC = 0)		I _{EBO}	_	1	mAdc
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 0.3 Adc, V _{CE} = 10 Vdc) (I _C = 1 Adc, V _{CE} = 10 Vdc)		hFE	30 10	150 —	_
Collector–Emitter Saturation Voltage (I _C = 1 Adc, I _B = 0.2 Adc)		V _{CE(sat)}	_	1	Vdc
Base–Emitter On Voltage (IC = 1 Adc, VCE = 10 Vdc)		V _{BE(on)}	_	1.5	Vdc
DYNAMIC CHARACTERISTICS					
Current Gain — Bandwidth Product (I _C = 0.2 Adc, V _{CE} = 10 Vdc, f = 2 MHz)		fΤ	10	_	MHz
Small–Signal Current Gain (I _C = 0.2 Adc, V _{CE} = 10 Vdc, f = 1 kHz)		h _{fe}	25	_	_

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

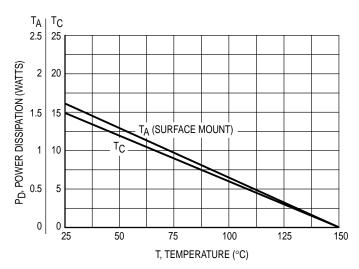


Figure 1. Power Derating

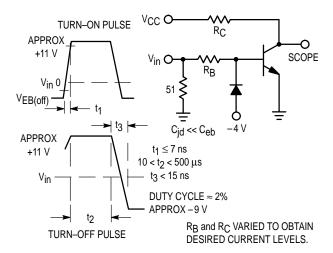


Figure 2. Switching Time Equivalent Circuit