

6A, 600V Ultrafast Diodes

The RURD660 and RURD660S are ultrafast diodes with soft recovery characteristics ($t_{rr} < 55 \text{ns}$). They have low forward voltage drop and are silicon nitride passivated ion-implanted epitaxial planar construction.

These devices are intended for use as freewheeling/ clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and ultrafast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Formerly developmental type TA49038.

Ordering Information

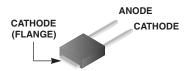
PART NUMBER	PACKAGE	BRAND
RURD660	TO-251	RUR660
RURD660S	TO-252	RUR660

NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-252 variant in the tape and reel, i.e., RURD660S9A.

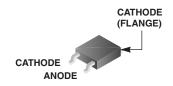
Symbol

Features

•	Ultrafast with Soft Recovery
•	Operating Temperature175°C
•	Reverse Voltage


- · Avalanche Energy Rated
- Planar Construction

Applications


- Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Packaging

JEDEC STYLE TO-251

JEDEC STYLE TO-252

RURD660

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RURD660S	UNITS
Peak Repetitive Reverse Voltage	600	V
Working Peak Reverse Voltage	600	V
DC Blocking VoltageV _R	600	V
Average Rectified Forward Current $I_{F(AV)}$ ($T_C = 155^{\circ}C$)	6	Α
Repetitive Peak Surge Current	12	Α
Nonrepetitive Peak Surge Current	60	Α
Maximum Power Dissipation	50	W
Avalanche Energy (See Figures 10 and 11)	10	mJ
Operating and Storage Temperature	-65 to 175	°C
Maximum Lead Temperature for Soldering		
Leads at 0.063 in. (1.6mm) from case for 10s	300	°C
Package Body for 10s, see Tech Brief 334TPKG	260	°C

RURD660, RURD660S

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V _F	I _F = 6A	-	-	1.5	V
	I _F = 6A, T _C = 150°C	-	-	1.2	V
I _R	V _R = 600V	-	-	100	μА
	$V_R = 600V, T_C = 150^{\circ}C$	-	-	500	μА
t _{rr}	$I_F = 1A$, $dI_F/dt = 200A/\mu s$	-	-	55	ns
	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	-	60	ns
t _a	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	28	-	ns
t _b	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	16	-	ns
Q _{RR}	$I_F = 6A$, $dI_F/dt = 200A/\mu s$	-	150	-	nC
СЈ	V _R = 10V, I _F = 0A	-	25	-	pF
$R_{ heta JC}$		-	-	3	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

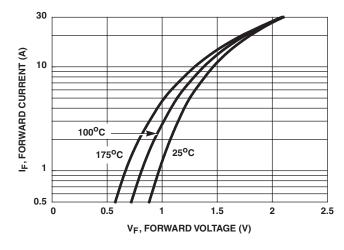
 I_R = Instantaneous reverse current.

 t_{rr} = Reverse recovery time (See Figure 9), summation of t_a + t_b .

 t_a = Time to reach peak reverse current (See Figure 9).

 t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

 Q_{RR} = Reverse recovery charge.


 C_J = Junction capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

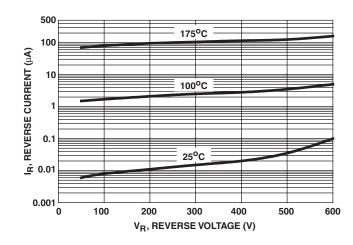


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE